Continuous time nonstationary correlation models for sparse longitudinal data
نویسندگان
چکیده
منابع مشابه
Continuous-Time Regression Models for Longitudinal Networks
The development of statistical models for continuous-time longitudinal network data is of increasing interest in machine learning and social science. Leveraging ideas from survival and event history analysis, we introduce a continuous-time regression modeling framework for network event data that can incorporate both time-dependent network statistics and time-varying regression coefficients. We...
متن کاملNonstationary Continuous - Time Processes ∗
∗Preliminary Comments are welcome. Paper written for the Handbook of Financial Econometrics edited by Yacine Aı̈t-Sahalia and Lars Peter Hansen. We thank Darrell Duffie, Benoit Perron and Mark Watson for discussions and Seoyeon Lee for research assistance. Bandi acknowledges financial support from the IBM Corporation Faculty Research Fund at the University of Chicago. Phillips thanks fhe NSF for...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولFunctional-Coefficient Models for Nonstationary Time Series Data∗
This paper studies functional coefficient regression models with nonstationary time series data, allowing also for stationary covariates. A local linear fitting scheme is developed to estimate the coefficient functions. Consistency and asymptotic distributions of the estimators are obtained, showing different convergence rates for the stationary and nonstationary covariates. A two-stage approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Model Assisted Statistics and Applications
سال: 2019
ISSN: 1574-1699,1875-9068
DOI: 10.3233/mas-190462